一、沟股定理是什么意思?
勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。
这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。
他们发现勾股定理的时间都比我国晚,我国是最早发现这一几何宝藏的国家。
目前初二学生学,教材的证明方法采用赵爽弦图。
勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。
勾股定理指出: 直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。
也就是说, 设直角三角形两直角边为a和b,斜边为c,那么 a的平方+b的平方=c的平方 a^2+b^2=c^2 勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理其实是余弦定理(b^2=a^2+c^2-2abCosB)的一种特殊形式。
我国古代著名数学家商高说:“若勾三,股四,则弦五。
”它被记录在了《九章算术》中。
二、勾股数的勾、股、弦是什么意思?谢谢
勾,股,玄。
分别指直角三角形的。
短的直角,边长的直角边跟斜边。
三、勾股是什么意思
在古代,勾股定理是这样解释的,叫做勾的平方+股的平方=弦的平方。
勾和股就分别是两条直角边,而弦就是斜边。
四、勾股定理里的勾和股各是什么意思
勾股定理里的勾指的是直角三角形中较短的直角边,股指的是直角三角形中较长的直角边,还有斜边叫弦
五、勾股定理是什么意思
在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理
六、勾股定理、正弦定理、余弦定理和勾三股四玄五是什么意思?
勾股定理是在直角三角形中,两直角边的平方和等于斜边的平方。
勾三股四玄五,就是两直角边分别为3、4,斜边为5在△ABC中,∠A、∠B、∠C对应的三边分别为a、b、c正弦定理:三角形三个边长与对应角正弦值的比值均相等,且均等于外接圆直径长。
即:a/sinA=b/sinB=c/sinC=2R(R为△ABC外接圆的半径)余弦定理:a^2+b^2-2*a*b*cosC=c^2a^2+c^2-2*a*c*cosB=b^2b^2+c^2-2*b*c*cosA=a^2由此可见,勾股定理只是余弦定理的一个特殊情况,即其中有一个角,∠A、∠B或∠C等于90度的特殊情况。
正弦定理和余弦定理可应用于所有三角形,而勾股定理只适用于直角三角形。
七、勾三股四弦五是什么意思?
就是勾股定理,
八、勾股定理中什么是勾?什么是股?是谁提出的?
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。
其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。
这个原理是大禹在治水的时候就总结出来的呵。
” 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。
稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。
其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。
如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。
其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。
所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。
书中的《勾股章》说;
“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。
” 中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。
在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。
(这不能考图也就把证明省略了)
参考文档
下载:股票勾股是什么意思.pdf《科创板股票申购中签后多久卖》《股票交易后多久能上市》《财通证券股票交易后多久可以卖出》《股票发债时间多久》下载:股票勾股是什么意思.doc更多关于《股票勾股是什么意思》的文档...声明:本文来自网络,不代表【股识吧】立场,转载请注明出处:https://www.gupiaozhishiba.com/subject/14639255.html