1.欧式看涨期权理论价格C=SN(d1)-N(d2)Ke^[-r(T-t)],欧式看跌期权理论价格P=N(-d2)Ke^[-r(T-t)]-SN(-d1),把看涨期权理论价格公式减去看跌期权理论价格公式化简后可得Call
股识吧

欧式股票看跌期权如何套利…证明 :无套利均衡证明不支付红利的欧式看涨看跌期权平价关系。

  阅读:6946次 点赞:102次 收藏:59次

一、1.试推导出欧式看涨看跌期权的价格平价等式。2.上题中是否存在套利机会,如何套利?

1.欧式看涨期权理论价格C=SN(d1)-N(d2)Ke^[-r(T-t)],欧式看跌期权理论价格P=N(-d2)Ke^[-r(T-t)]-SN(-d1),把看涨期权理论价格公式减去看跌期权理论价格公式化简后可得Call-Put平价公式为P+S=C+Ke^[-r(T-t)]

2.根据平价公式依题意可知,K=45,C=8,P=1,e^-r=1/(1+10%),T-t=3/12=1/4,S=50。
(注:题目中没有说明无风险利率是否连续,这是按不连续算的e^-r,由于是3个月期,对于T-t是按年化来计算的。
) 把相关数值代入平价公式可得1+50&;
lt;
8+45/(1+10%)^(1/4)=51.94,存在套利机会。
应该通过持有该期权标的物和买入看跌期权,并且卖出看涨期权构成一个套利头寸组合。
3.当股票价格为40元,看跌期权进行行权,获得5元(45-40)的期权价值,扣除1元购入看跌期权成本,实际获利4元;
标的物股票亏损10元(50-40);
卖出的看涨期权,由于标的物股票价格低于执行价格,故此看涨期权是不会行权的,所以卖出的看涨期权获利为卖出时的期权费8元。
综合上述情况,套利利润为4-10+8=2元。

1.试推导出欧式看涨看跌期权的价格平价等式。2.上题中是否存在套利机会,如何套利?


二、知道股票标的价格,执行价,无风险年利率,还有三个月的欧式看涨期权价和看跌期权价,如何套利?

1.call-put差价2.s-k(1+r)^0.253.比较1与2大小,1大在股市套利,2大在期货市场套利

知道股票标的价格,执行价,无风险年利率,还有三个月的欧式看涨期权价和看跌期权价,如何套利?


三、急求!欧式看涨期权的套利问题

欧式看涨期权是指通过金融资产的未来价格上涨来进行套利或保值的,且其期权只有在期权和约到期时方能执行的一种金融衍生品。
其具体操作在于在现在时刻预计未来某一金融产品价格会上涨,则我可以去寻找一和交易对手,与对方签定一份期权和约,约定在未来某一时间以一约定的价格买入该种金融产品,同时寻要向对方支付一定的期权费。
这样你就获得了未来买入该金融产品的纯粹权利,而不承担义务,你可以去选择执行该期权,也可以不去执行,当然这样你会无故损失你的期权费了。
而期权的卖方收取期权费则需承担到期卖出某种金融产品的义务,不具有其他权利。
当未来价格相对与协议价格上涨,且起上涨的总额大于你所付出的期权费用的时候,你可以去执行看涨期权,以协议价格从交易对手那里买入约定数量的该种产品,再在现货市场上以市场价格卖出,转手获取利润,利润减去你所付出的期权费用变是你使用期权所获得的净收益。
同理若未来价格相对与协议价格上涨的总额不足以弥补你所付出的期权费用,你选择执行期权,获得一定利润,但总的收益为付。
最后当未来价格相对与协议价格甚至下跌了,执行期权的利润为付,同时付出期权费,损失二者之和,所以选择不能执行期权。
上述题目中股票现价为100定立的期权自然是未来买入的协议价格越低,期权卖方所承担的风险越大,所应得到的风险补偿也应该越大了。
欲求是否存在套利机会你是否还因给出完整的欧式看涨期权的期限N,无风险利率r.计算如下:将协议价格K贴现到当今时刻为:K*e^(-r*N)比较K*e^(-r*N)与现在的股票价格100的差额与期权费的关系若相等则不存在套利机会其他情况均存在

急求!欧式看涨期权的套利问题


四、欧式股票看涨期权价格高估如何套利

期权交易实战中比你上面说的要简单许多,一个是做股票通过期权进行保险。
这个你自然会明白。
一个是通过期权市场投机,特别是贴近现有股票价格的期权(无论是购权还是沽权),随着股票价格的变化,价格变化很剧烈,有时候当天价格变化幅度达到40%,何况期权还有杠杆,可见这一市场的获利潜力和亏损风险有多大。
但是期权市场是T+0市场,可以随时平仓。
你说的情况是套利,这种形式主要是安全。
但期权市场真正上市后,将是个投机为主的市场。
很有前景,但现在真正了解的并不多。
比期货市场好!

欧式股票看涨期权价格高估如何套利


五、急求!欧式看涨期权套利问题!

楼上讲的根本不是套利。
我认为是有的,如果依据B-S定价公式的话,在同一种股票,到期日相同的情况下,C1-C2也就是期权家的差额应该等于现价乘以不行权累计概率的差额。
鉴于这种变化是非线性的,因此期权的应该是有偏差的。
这种思路也许将问题复杂化,但是如果是非套利的话,应该说这三者线性相关,但实际上即使是风险中性的期权组合也是会有盈利的可能的。
回去想了一下,其实很简单,只要买入n只股票,再卖出n个看涨期权就行,这样不管股价如何,都能收到15的无风险收益.下面三个齐全的收益曲线是平行的,所以随意组合都可以,只要卖出的分数和买入的分数相等即可.

急求!欧式看涨期权套利问题!


六、Calendar Spread的套利,假设执行价为100的近月股票看涨期权价格为5.00,同一执行价的远月股票看涨

BC。
1.欧式期权的执行权在期权到期时,所以无论是否有红利都必须等到到期才能做出是否执行期权的决定,所以排除A,B入选,进而排除D;
2.美式期权可以随时执行期权,所以有利于投资者,可知C正确。

Calendar Spread的套利,假设执行价为100的近月股票看涨期权价格为5.00,同一执行价的远月股票看涨


七、关于看跌期权的问题,看跌期权如何获利?

即使将来股票下跌,投资者还是要先买入股票才能再以约定价格卖出这份股票呀?。


这句话是你自己说的哦。
你再想深入一步就自己解决问题了。
比如你有权在将来以20元卖出某股票,而后来股票下跌到了5元。
你先以5元买入再以20卖出……就赚钱了。

关于看跌期权的问题,看跌期权如何获利?


八、证明 :无套利均衡证明不支付红利的欧式看涨看跌期权平价关系。

假设两个投资组合A: 一个看涨期权和一个无风险债券,看涨期权的行权价=K,无风险债券的到期总收益=KB: 一个看跌期权和一股标的股票,看跌期权的行权价格=K,股票价格为S投资组合A的价格为:看涨期权价格(C)+无风险债券价格(K-i)。
i为债券利息。
投资组合B的价格为:看跌期权价格(P)+股票价格S画图或者假设不同的到期情况可以发现,A、B的收益曲线完全相同。
根据无套利原理,拥有相同收益曲线的两个投资组合价格必然相同。
所以 C+K-i=P+S,变形可得C-P=S-K+i

证明 :无套利均衡证明不支付红利的欧式看涨看跌期权平价关系。


参考文档

下载:欧式股票看跌期权如何套利.pdf《股票卖出后钱多久可取》《买卖股票多久扣费》《一个股票在手里最多能呆多久》《股票冷静期多久》《股票一般多久一次卖出》下载:欧式股票看跌期权如何套利.doc更多关于《欧式股票看跌期权如何套利》的文档...
我要评论