一、我是木工放线时常用勾三股四弦五这个定理来求直角,问勾是1米股是2米
不可以 那只是直角三角形勾股定理的一个特例
二、在施工中放线怎么利用勾三股四弦五才能放出直角线
在直线AD为初始直线,以A点为起点向右量取300mm,即AB=300,以A点为圆心,400mm为半径画圆,以B点为圆心,500mm为半径画圆,两圆交于点C,连接AC,BC,则AC垂直于BC,完毕。
三、可以用“勾三,股四,弦五”的关系来求全部的直角三角形的“求第三遍”的问题吗?
不可以 那只是直角三角形勾股定理的一个特例
四、勾3股4弦5三角形的角度是多少?
弦5相对着的角是90度,勾3的对角是37度,股4的对角为53度。
详细解释:首先由勾3股4弦5知三角形满足勾股定理,是直角三角形;
设勾3的对角是A,股4的对角为B。
那么sinA=3/5,A=arcsin3/5=37度。
sinB=4/5,B=arcsin4/5=53度。
扩展资料勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
参考资料来源:股票百科——勾股定理
五、勾3股4玄5的算计方法与公式
我们用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。
其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。
如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。
其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。
所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。
书中的《勾股章》说;
“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。
”把这段话列成算式,即为:弦=(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2) 中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。
在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。
每个直角三角形的面积为ab/2;
中间懂得小正方形边长为b-a,则面积为(b-a)2。
于是便可得如下的式子:4×(ab/2)+(b-a)2=c2化简后便可得:a2+b2=c2亦即:c=(a2+b2)(1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。
他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。
以后的数学家大多继承了这一风格并且代有发展。
例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。
参考文档
下载:勾3股4弦5怎么算直角.pdf《股票增发预案到实施多久》《一只股票多久才能涨》《股票公告减持多久可以卖》《股票停牌多久下市》下载:勾3股4弦5怎么算直角.doc更多关于《勾3股4弦5怎么算直角》的文档...声明:本文来自网络,不代表【股识吧】立场,转载请注明出处:https://www.gupiaozhishiba.com/book/74044371.html