一、量子计算机到量子比特,各国为什么致力于这一领域?
在微观尺度上,一个量子比特可以同时处于多个状态,而不像传统计算机中的比特只能处于0和1中的一种状态。
这样的一些特性,让量子计算机的计算能力能远超传统计算机。
美国谷歌公司等机构在2022年宣布,它们的“D波”(D-Wave)量子模拟机对某些问题的求解速度已达到传统计算机的1亿倍。
虽然它并不被认为是真正的量子计算机,但量子计算的巨大潜力已经显露。
量子计算需要克服环境噪声、比特错误和实现可容错的普适量子纠错等一系列难题,真正量子计算机研发挑战巨大。
 ;
为加速进入量子计算机阵营,各国政府纷纷加大投入。
欧盟在2022年宣布投入10亿欧元支持量子计算研究,美国仅政府的投资即达每年3.5亿美元。
中国也在大力投入,目前正在筹建量子信息国家实验室,一期总投资约70亿元。
如果“量子霸权”实现,人类计算能力将迎来飞跃,接下来就会是在多个领域的推广。
一些行业巨头已经盯上了量子计算未来应用:阿里巴巴建立了量子计算实验室;
中科院与阿里云合作发布量子计算云平台;
IBM也在去年宣布计划建立业界首个商用通用量子计算平台IBM Q,还与摩根大通等公司合作计划在2022年前推出首个在金融领域的量子计算应用。
传统计算机要100年才能破解的难题,量子计算机可能仅需1秒,如此“洪荒之力”、酷炫前景各国岂能袖手旁观?去年底,美国IBM公司宣布推出全球首款50量子比特的量子计算原型机,量子计算领域的竞争进入关键阶段。
聪者听于无声,明者见于未形。
当魔幻般的理论在现实中推动进步,各国的科研实力体现无疑。
在IBM公司宣布成果的半年前,中国科学家已发布世界首台超越早期传统计算机的光量子计算机,实现10个超导量子比特纠缠,在操纵质量上也是全球领先。
从个位数到几十量子比特的进展,各国你追我赶,这到底是为什么?从1970年到2005年,正如摩尔定律预测的一样,每18个月集成电路上可容纳的元器件数目约增加一倍,计算机的性能也相应提升近一倍。
但2005年后这种趋势就开始放缓,极其微小的集成电路面临散热等问题考验。
二、5 q-bit(昆比特)可以表示多少种状态的叠加?
一个量子重叠态运行一个昆比特位同时储存0和1。
两个昆比特位能同时储存所有的4个二进制数。
三个昆比特位能储存8个二进制数000,001,010,011,100,101,110和111。
下表表明300个昆比特位能同时储存多于1090个数字。
这甚至多于我们这个可见宇宙中的原子数。
三、我国已实现多少个量子比特纠缠?
中国科学技术大学潘建伟教授及其同事陆朝阳、刘乃乐、汪喜林等通过调控6个光子的偏振、路径和轨道角动量3个自由度,在国际上首次实现18个光量子比特的纠缠,刷新了所有物理体系中最大纠缠态制备的世界纪录。
多个量子比特的相干操纵和纠缠态制备是发展可扩展量子信息技术,特别是量子计算的最核心指标。
量子计算的速度随着实验可操纵的纠缠比特数目的增加而指数级提升。
然而,要实现多个量子比特的纠缠,需要进行高精度、高效率的量子态制备和独立量子比特之间相互作用的精确调控。
多粒子纠缠的操纵作为量子计算不可逾越的技术制高点,一直是国际角逐的焦点。
2022年底,潘建伟团队同时实现了10个光子比特和10个超导量子比特的纠缠,刷新并一直保持着这两个世界纪录。
通过多年的不懈探索和技术攻关,研究组成功实现了18个光量子比特超纠缠态的实验制备和严格多体纯纠缠的验证,创造了所有物理体系纠缠态制备的世界纪录。
该成果可进一步应用于大尺度、高效率量子信息技术,表明我国继续在国际上引领多体纠缠的研究。
来源:人民日报
四、量子比特的基本特征
从物理上来说量子比特就是量子态,因此,量子比特具有量子态的属性。
由于量子态的独特量子属性,量子比特具有许多不同于经典比特的特征,这是量子信息科学的基本特征之一 。
五、量子芝诺效应(quantum zeno effect)
量子芝诺效应又称为图灵悖论(Turing paradox)。
量子芝诺效应即是对一个不稳定量子系统频繁的测量可以冻结该系统的初始状态或者阻止系统的演化。
如果测量时间间隔足够短,可以把测量看作是连续的测量,正是由于这样的测量所引起的波函数坍缩阻止了量子态之间的跃迁。
人们对量子芝诺效应的研究大多数只是考虑初始态为纯态的情形。
纯态不稳定系统的量子芝诺效应的存在性已经被证实。
此外,一些研究者已提出系统的初始状态对量子芝诺效应的发生有一定的影响。
至2022年为止,有关初始态为混合态的量子芝诺效应罕见报道。
扩展资料:量子芝诺效应描述:不稳定的量子系统在短时间内的表现有可能会不同于指数衰减。
这种现象就会使得在非指数衰减期间的高频率观测将可以抑制系统的衰减,也就是量子芝诺效应。
另外,也有研究指出,过高频率的观测也可以导致系统衰减的加速。
量子力学中,所谓的“观测”将产生经典力学的物理量。
高频率的观测会减缓系统的跃迁。
这种跃迁可以是指粒子从一个半空间到另一个,也可以是波导中光子从一种横向模态(英语:Transverse mode)到另外一种,或者是原子中系统从一个量子态转化到另外一个。
这种跃迁也可以是量子计算机中,系统从一个没有量子比特退相干损失的子空间,变成有一个量子比特损失的过程。
这种情况下,通过判断退相干过程是否发生就可以进行对量子比特的纠错。
这些过程都可以被认为是量子芝诺效应的应用。
一般来讲,这种效应通常只发生在量子态可分辨的的量子系统中,也就是说一般不能在经典或宏观过程中发生。
参考资料来源:股票百科-量子芝诺效应
参考文档
声明:本文来自网络,不代表【股识吧】立场,转载请注明出处:https://www.gupiaozhishiba.com/article/39554364.html